

1. Find the average rate of change of the following function over the given interval.

given interval.

$$y = \frac{2x+1}{x+2}, [1,3]$$

$$f(1) = \frac{2(1)+1}{1+2}, f(3) = \frac{2(3)+1}{3+2} = \frac{f(1)-f(3)}{1-3}$$

$$= \frac{3}{3}$$

$$(1,1)$$

$$xy$$

$$= \frac{2}{3}$$

$$(3,2)$$

$$= \frac{2}{5}$$

$$= \frac{2}{10}$$

$$= \frac{2}{10}$$

2. Find the equation of the secant line connecting the points x=1 and x=3 on the function above.

Calculus 120 Unit 1: Rate of Change and Derivatives

January 31, 2019: Day 2

- 1. Course Outlines Distributed
- 2. Assignment #1 Due on Monday
- 3. Textbook Sign-Out
- 4. Any questions from yesterday?

_			^ 1	
	ırrıcı	IIIIM	Outco	mes
Vи		41 M I I I	U ulu	<i>-</i>

C1. Explore the concepts of average and instantaneous rate of change.

Discuss rate of change in relation to velocity of a car.	
Discuss interest rates at banks.	

Investigation: Calculating Instantaneous Rate of Change

An object is dropped from rest from the top of a cliff. Its height in metres, after t seconds, can be calculated using the function $h(t) = -4.9t^2 + 50$.

1. Calculate the average rate of change over the following time intervals:

c)
$$[2,3]$$

f) [2.99,3]

- 2. Sketch the function and secant lines to represent the averages rates of change above.
- 3. How can we calculate instantaneous rate of change algebraically? graphically?

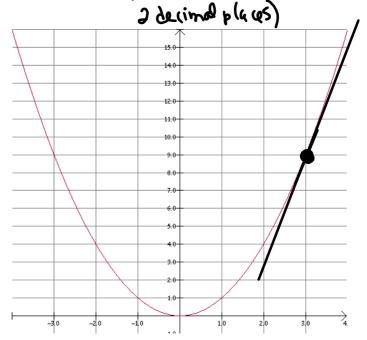
$$\frac{1}{\sqrt{1 - 4.91}} = -4.91 + 50 \quad [0,3] \quad f(0) = 0 + 50 = 50$$

$$\frac{1}{\sqrt{1 - 4.9}} = -4.9(3) + 50$$

$$\frac{$$

Instantaneous rate of change is the slope of a tangent line at a particular point. This value can be calculated exactly using Calculus; however, we can also approximate it by finding the average rate of change over an extremely small interval. (within at least change)

A tangent line is a line that touches (not intersects) a curve at one point.



Find the IROC of the function $y = x^2 + 2x + 1$ at x = 2.

$$TROC = \frac{f(x_1) - f(x_2)}{x_1 - x_2}$$

$$= f(199) - f(2)$$

$$1.99 - 2$$

$$= 8.9401 - 9$$

$$-0.01$$

$$= -0.0599$$

$$-0.01$$

$$= 5.99$$

$$\therefore TROC = 6$$

$$\frac{f(x_1) - f(x_2)}{x_1 - x_2} = \frac{f(199) - f(2)}{1.99 - 2}$$

$$\frac{f(199) - f(2)}{1.99 - 2}$$

$$\frac{f(2) = 2^2 + 2(2) + 1}{1.99 - 2}$$

$$\frac{f(2) = 2^2 + 2(2) + 1}{1.99 - 2}$$

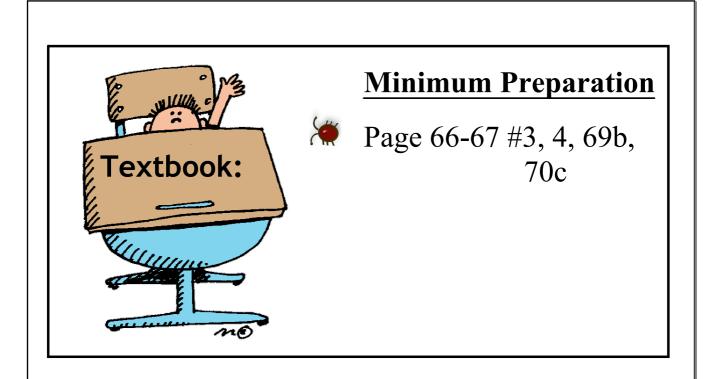
$$\frac{f(2) = 2^2 + 2(2) + 1}{1.99 - 2}$$

$$\frac{f(2) = 2^2 + 2(2) + 1}{1.99 - 2}$$

Find the IROC of the function $y = x^3 - 2x^2 + x - 4$ at $x = -1$.					

A ball is dropped off the CN Tower and its velocity is modeled by the function $h(t) = -4.9t^2 + 600$, where h is the height of the ball in metres, and t is the time in seconds after the ball's release.

- a) Calculate the average velocity of the ball oveer the first four seconds of flight.
- b) Calculate the velocity of the ball at exactly 4.0 seconds into its decent.



Attachments

2.1_74_AP.html

2.1_74_AP.swf

2.1_74_AP.html